RNDr. Gabriel Žoldák, PhD.

Specialist in protein stability and folding, single molecule protein biophysics, optical tweezers, protein thermodynamics and kinetics. Recent research interests: force spectroscopy of heat shock proteins 70, chaperones, cis/trans proline isomerisation, conformational stability of therapeutic proteins.

Education:
09/1998 – 07/2001 PJ Safarik University Kosice (Slovakia) – Bc. in Chemistry
09/2001 – 06/2003 PJ Safarik University Kosice (Slovakia) – Msc. in Biochemistry
09/2003 – 05/2006 PJ Safarik University Kosice – Ph.D. study in Biochemistry
05/2006 Defence of Ph.D. thesis

Languages
German, English, Slovak

Professional positions:
2006 Researcher in Biochemistry, P.J. Šafárik University, Košice, Slovak Republic
2006–2010 Postdoctoral Scientists, University Bayreuth, Dep. Biochemistry, Germany
2010– 2017 Principal Investigator, Technical University Munich, Germany
2010–2017 Team Leader, University Bayreuth, Dep. Biochemistry, Germany
2012–2016 Associate Editor for Biochemistry in Chemical papers (Bratislava)
2017-presence Researcher at Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Košice, Slovak Republic

Grants and Projects
01/2016–12/2017 DAAD 57212263, bilateral exchange program GER/CZ, Protein-protein interaction within the 14–3–3 family. EUR 8.000
08/2010–08/2012 ZO-291/1–1 DFG, German research council, Communication between the domains of the DnaK chaperone characterized by single molecule force spectroscopy. EUR 160.000
01/2007–12/2007 VEGA 1/4319/07, Study of conformational, functional and sequence diversity of homodimeric flavoproteins, EUR ca. 8.000

Publications

Researcher ID: Q-7412–2017, ORCID ID: orcid.org/0000–0002–5271–8837,
Scopus Author ID: 6506775027

Publications: 33, Citations: 607 (Scopus/WOS), h-index 14, * corresponding author, 1st-first author, iequal contribution with the first author

  1. Garajová K, Zimmermann M, Petrenčáková M, Dzurová L, Nemergut M, Škultéty Ľ, Žoldák G, Sedlák E. The molten-globule residual structure is critical for reflavination of glucose oxidase. Biophys Chem. 2017 Nov;230:74–83.
  2. Nemergut M, Žoldák G, Schaefer JV, Kast F, Miškovský P, Plückthun A, Sedlák E. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering. Protein Sci. 2017 Nov;26(11):2229–2239
  3. Žoldák G, Jancura D, Sedlák E. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions. Protein Sci. 2017 Jun;26(6):1236–1239.
  4. Mandal SS, Merz DR, Buchsteiner M, Dima RI, Rief M, Žoldák* G. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6040–6045.
  5. Pelz B, Žoldák G, Zeller F, Zacharias M, Rief M. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nat Commun. 2016 Feb 24;7:10848.
  6. Bauer D, Merz DR, Pelz B, Theisen KE, Yacyshyn G, Mokranjac D, Dima RI, RiefM, Žoldák* G. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK. Proc Natl Acad Sci USA. 2015 Aug 18;112(33):10389–94.
  7. Hocking HG, Häse F, Madl T, Zacharias M, Rief M, Žoldák* G. A compact native 24-residue supersecondary structure derived from the villin headpiece subdomain. Biophys J. 2015 Feb 3;108(3):678–86.
  8. Rognoni L, Möst T, Žoldák G, Rief M. Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5568–73.
  9. Žoldák G, Rief M. Single molecule analysis: Force spectroscopy – Dynamics and manipulation of single molecules(Article)[Kraftspektroskopie – Dynamik und Manipulation einzelner Moleküle: Einzelmolekülanalyse] BioSpektrumVolume 20, Issue 1, February 2014, 33–35
  10. Li J, Žoldák G, Kriehuber T, Soroka J, Schmid FX, Richter K, Buchner J. Unique proline-rich domain regulates the chaperone function of AIPL1. Biochemistry. 2013 Mar 26;52(12):2089–96.
  11. Žoldák G, Rief M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr Opin Struct Biol. 2013 Feb;23(1):48–57.
  12. Žoldák* G, Stigler J, Pelz B, Li H, Rief M. Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy. PNAS U S A. 2013 Nov 5;110(45):18156–61.
  13. Žoldák G, Geitner AJ, Schmid FX. The prolyl isomerase SlyD is a highly efficient enzyme but decelerates the conformational folding of a client protein. JACS. 2013 Mar 20;135(11):4372–9.
  14. Carstensen L, Žoldák G, Schmid FX, Sterner R. Folding mechanism of an extremely thermostable (βα)(8)-barrel enzyme: a high kinetic barrier protects the protein from denaturation. Biochemistry. 2012 Apr 24;51(16):3420–32.
  15. Žoldák G, Schmid FX. Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD. J Mol Biol. 2011 Feb 11;406(1):176–94.
  16. Tóth K, Sedlák E, Musatov A, Žoldák* G. Activity of NADH oxidase from Thermus thermophilus in water/alcohol binary mixtures is limited by the stability of quaternary structure. Journal of Molecular Catalysis B: Enzymatic Volume 2010, Jun; 64: 60–67
  17. Žoldák G, Aumüller T, Lücke C, Hritz J, Oostenbrink C, Fischer G, Schmid FX. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases. Biochemistry. 2009 Nov 3;48(43):10423–36.
  18. Žoldák G, Carstensen L, Scholz C, Schmid FX. Consequences of domain insertion on the stability and folding mechanism of a protein. J Mol Biol. 2009 Mar 6;386(4):1138–52.
  19. Jakob RP, Žoldák G, Aumüller T, Schmid FX. Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20282–7.
  20. Weininger U, Haupt C, Schweimer K, Graubner W, Kovermann M, Brüser T, Scholz C, Schaarschmidt P, Žoldák G, Schmid FX, Balbach J. NMR solution structure ofSlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function. J Mol Biol. 2009 Mar 27;387(2):295–305.
  21. Sedlák E, Žoldák G, Wittung-Stafshede P. Role of copper in thermal stability of human ceruloplasmin. Biophys J. 2008 Feb 15;94(4):1384–91.
  22. Žoldák G, Sedlák E, Wolfrum A, Musatov A, Fedunová D, Szkaradkiewicz K, Sprinzl M. Multidomain initiation factor 2 from Thermus thermophilus consists of the individual autonomous domains. Biochemistry. 2008 Apr 29;47(17):4992–5005.
  23. Tóth K, Sedlák E, Sprinzl M, Žoldák* G. Flexibility and enzyme activity of NADH oxidase from Thermus thermophilus in the presence of monovalent cations of Hofmeister series. Biochim Biophys Acta. 2008 May;1784(5):789–95.
  24. Žoldák G, Redecke L, Svergun DI, Konarev PV, Voertler CS, Dobbek H, Sedlák E, Sprinzl M. Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Res. 2007;35(4):1343–53.
  25. Tomásková N, Varhac R, Žoldák G, Oleksáková L, Sedláková D, Sedlák E. Conformational stability and dynamics of cytochrome c affect its alkaline isomerization. J Biol Inorg Chem. 2007 Feb;12(2):257–66.
  26. Žoldák G, Sedlák E, Valusová E, Wolfrum A, Marek J, Antalík M, Sprinzl M. Irreversible thermal denaturation of elongation factor Ts from Thermus thermophilus effect of the residual structure and intermonomer disulfide bond. Biochim Biophys Acta. 2006 Jul;1764(7):1277–85.
  27. Hritz J, Žoldák G, Sedlák E. Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus. Proteins. 2006 Aug1;64(2):465–76.
  28. Stupák M, Žoldák G, Musatov A, Sprinzl M, Sedlák E. Unusual effect of salts on the homodimeric structure of NADH oxidase from Thermus thermophilus in acidic pH. Biochim Biophys Acta. 2006 Jan;1764(1):129–37.
  29. Žoldák G, Musatov A, Stupák M, Sprinzl, M., Sedlák E. pH-induced changes in activity and conformation of NADH oxidase from Thermus thermophilus. General Physiology and Biophysics 2005 (3) , 279–298
  30. Žoldák G, Zubrik A, Musatov A, Stupák M, Sedlák E. Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure. J Biol Chem. 2004 Nov12;279(46):47601–9.
  31. Žoldák G, Sprinzl M, Sedlák E. Modulation of activity of NADH oxidase from Thermus thermophilus through change in flexibility in the enzyme active site induced by Hofmeister series anions. Eur J Biochem. 2004 Jan;271(1):48–57.
  32. Žoldák G, Sut’ák R, Antalík M, Sprinzl M, Sedlák E. Role of conformational flexibility for enzymatic activity in NADH oxidase from Thermus thermophilus. Eur J Biochem. 2003 Dec;270(24):4887–97.
  33. Sedlák E, Žoldák G, Antalík M, Sprinzl M. Thermodynamic properties of nucleotide-free EF-Tu from Thermus thermophilus in the presence of low-molecular weight effectors of its GTPase activity. Biochim Biophys Acta. 2002 May 20;1597(1):22–7.